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Major symbols 

AE, AW, AN, 

AS, AP, Sp, Ak                            Coefficients in Discretised Equations 

B                                                  Body Force (N/kg) or Spalding Number 

Bi                                                 represent a buoyancy force, a centrifugal and/or Coriolis force, 

an 

                                                       electromagnetic force, etc. Sometimes, Bi may also  

                                                       represent resistance  forces. 

CC                                                  Convergence criterion 

FCi                                                  Fractional change  

FCMX                                            Maximum fractional change 

GS                                                  Gauss–Seidel method 

h                                                   Enthalpy (J/kg) or Heat Transfer Coefficient (W/m2-K) 

k                                                   Thermal Conductivity (W/m-K) 

P                                                   Peclet Number 

p                                                    Pressure (N/m
2
) 

q                                                    Heat Flux (W/m
2
) 

    ,                                            Internal Heat Generation Rates (W/m
3
) 

S, Su                                             Source Term 

Sui                                                  represent viscous terms 

T                                                   Temperature (◦C or K) 



t                                                    Time (s) 

u, v,w                                           x-, y-, z-Direction Velocities (m/s) 

ui                                                  Velocity in xi , i = 1, 2, 3 Direction 

V                                                    Volume (m
3
) 

ΔV                                              Control volume 

α                                                 Under relaxation Factor or Thermal Diffusivity (m2/s) 

β                                                Under relaxation Factor for Pressure or 

                                                     Coefficient of Volume Expansion (K
−1

) 

Ψ                                                  Stream Function or Weighting Factor  

                                                  General Variable or Dimensionless Enthalpy 

                                                     General Exchange Coefficient = μ, ρD, or k/Cp 

P, N, S, E, W                                                           Refers to Grid Nodes 

n, s, e, w                                                                 Refers to Cell Faces 

eff                                                                           Refers to Effective Value 

f                                                                              Refers to Cell Face 

l                                                                              Iteration Counter 

o                                                                             Old Time 

u, v                                                                          Refers to Momentum Equations 

IOCV                                                                       Integration over a Control Volume Method 

TDMA                                                                   Tridiagonal Matrix Algorithm 

TSE                                                                         Taylor Series Expansion Method 

The potential of fundamental laws (in association with some further empirical laws) for 

generating widely applicable and scale-neutral information has been known almost ever since 

they were invented nearly 200 years ago. The realization of this potential (meaning the ability to 

solve the relevant differential equations), however, has been made possible only with the 

availability of computers. The past five decades have witnessed almost exponential growth in the 

speed with which arithmetic operations can be performed on a computer. 

By way of reminder, we note that the three laws governing transport are the following: 

1. The law of conservation of mass (transport of mass), 

2. Newton’s second law of motion (transport of momentum), and 



3. The first law of thermodynamics. (transport of energy). 

Transport Equations 

The aforementioned laws are applied to an infinitesimally small control volume located in a 

moving fluid. Here, it will suffice to mention that the law of conservation of mass is written for a 

single-component fluid or for a mixture of several species. When applied to a single species of 

the mixture, the law yields the equation of mass transfer when an empirical law, namely, Fick’s 

law of mass diffusion 

 (  
             ⁄  , is invoked. Newton’s second law of motion, combined with Stokes’s 

stress laws, yields three momentum equations for velocity in directions xj (j = 1, 2, 3). Similarly, 

the first law of thermodynamics in conjunction with Fourier’s law of heat conduction (qi,cond = 

−K ∂T /∂xi ) yields the so-called energy equation for the transport of temperature T or enthalpy h. 

Using tensor notation, we can state these laws as follows: 

Conservation of Mass for the Mixture 

   

  
  

 (    )

   
     ……………..   1 

 

1D Heat Conduction. 

A wide variety of practical and interesting phenomena are governed by the 1D heat conduction 

equation. Heat transfer through a composite slab, radial heat transfer through a cylinder, and heat 

loss from a long and thin fin are typical examples. By 1D, we mean that the temperature is a 

function of only one space coordinate (say x or r). This indeed is the case in steady-state 

problems. However, in unsteady state, the temperature is also a function of time. Thus, although 

there are two relevant independent variables (or dimensions), by convention, we refer to such 

problems as 1D unsteady-state problems. The extension dimensional thus always refers to the 

number of relevant space coordinates. The 1D heat conduction equation derived in the next 

section is equally applicable to some of the problems arising in convective heat transfer, in 

diffusion mass transfer, and in fluid mechanics, if the dependent and independent variables of the 

equation are appropriately interpreted. Our overall objective in this chapter is to develop a single 

computer program that is applicable to a wide variety of 1D problems. 

 

1. 1D Conduction Equation. 

Consider the 1D domain shown in Figure 1, in which the temperature varies only in the x 

direction although cross-sectional area A may vary with x. The temperature over the cross section 

is thus assumed to be uniform.We shall now invoke the first law of thermodynamics and apply it 

to a typical control volume of length_x. The law states that (Rate of energy in) − (Rate of energy 

out)+(Rate of generation of energy) = (Rate of change of Internal energy), or 
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where        (W/m
3
) is the volumetric heat generation rate, C denotes specific heat (J/kg-K), and 

Q (W) represents the rate at which energy is conducted. Further, it is assumed that the control 

volume       (         does not change with time. Similarly, the density ρ is also assumed 

constant with respect to time but may vary with x. Therefore, dividing Equation 1 by      , we 

get 

 

Figure 1. Typical 1D domain. 
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Now, letting Δx → 0, we obtain 

           ………………..  3 

This partial differential equation contains two dependent variables, Q and T. The equation is 

rendered solvable by invoking Fourier’s law of heat conduction. Thus, 



              ……………  4 

Where k is the thermal conductivity of the domain medium. Substituting Equation 4 in Equation 

3 therefore yields 

        ………………………   5 

It will be instructive to make the following comments about Equation 5. 

1. The equation is most general. It permits variation of medium properties ρ, k, and C with 

respect to x and/or t. 

2. The equation permits variation of cross-sectional area A with x. Thus, the equation is 

applicable to the case of a conical fin, for example. Similarly, the equation is also applicable to 

the case of cylindrical radial conduction if it is recognized that A = 2 × π × r, and if x is replaced 

by r. 

3. The equation also permits variation of     with T or x. Thus, if an electric current is passed 

through the medium,     will be a function of electrical resistance and the latter will be a function 

of T. Similarly, in case of a fin losing heat to the surroundings due to convection,     will be 

negative and it will be a function of the heat transfer coefficient h and perimeter P.  

4. Equation 5 is to be solved for boundary conditions at x = 0 and x = L (say). Thus, 0 ≤ x ≤ L 

specifies the domain of interest. 

2. Grid Layout 

Unlike analytical solutions, numerical solutions are obtained at a few chosen points within the 

domain. They are therefore called discrete solutions. Numerical solutions are obtained by 

employing numerical methods. The latter are really an intermediary between the physics 

embodied in the transport equations and the computers that can unravel them by generating 

numerical solutions. The process of arriving at numerical solutions is thus quite different from 

the process by which analytical solutions are developed. Before describing the essence of 

numerical methods, it is important to note that these methods, in principle, can overcome all 

three aforementioned impediments to obtaining analytical solutions. In fact, the history of CFD 

shows that numerical methods have been evolved precisely to overcome the impediments in the 

order of their mention. Selection of coordinates of such points (also called nodes) is called grid 

layout. Two practises are possible (see Figure 2). 

Practise A 

In this practise, the locations of nodes (shown by filled circles) are first chosen and then 

numbered from 1 to N. Note that the chosen locations need not be equispaced. Now the control 



volume faces (also called the cell faces) are placed midway between the nodes. When this is 

done, a difficulty arises at the near boundary nodes 2 and N − 1. For these nodes, the cell face to 

the west of node 2 is assumed to coincide with node 1 and, similarly, the cell face to the east of 

node N − 1 is assumed to coincide with node N. As such, there is no cell face between nodes 1 

and 2, nor between nodes N − 1 and N. The space between the adjacent cell faces defines the 

control volume. In this practise therefore the nodes, in general, will not be at the centre of their 

respective control volumes. Also note that if N nodes are chosen, then there are N − 2 control 

volumes. 

 

 

Figure 2: Grid layout practices. 

 

Practise B 

In this practise, the location of cell faces is first chosen and then the grid nodes are placed at the 

centre of the control volumes thus formed. Note again that the chosen locations of the cell faces 

need not be equi-spaced. Both practises have their advantages and disadvantages that become 

apparent only as one encounters multidimensional situations. Yet, a choice must be made. In this 

lecture, much of the discussion is carried out using practise A, but it will be shown that a 

generalized code can be written to accommodate either practise. 



                      

                                   Figure 3. Typical node P – Practise A. 

3. Discretisation 

Having chosen the grid layout, our next step is to convert the PDE (5) to an algebraic one. This 

process of conversion is called discretisation. Here again, there are two possible approaches: 

1. a Taylor series expansion (TSE) method or 

2. an integration over a control volume (IOCV) method. 

In both methods, a typical node P is chosen along with nodes E and W to east and west of P, 

respectively (see Figure 3). The cell face at e is midway between P and E, likewise, the cell face 

at w is midway between P and W. Before describing these methods, it is important to note an  

important aspect of discretisation. Equation 5 is a partial differential equation. The time 

derivative on the right-hand side (RHS), therefore, must be evaluated at a fixed x. We choose this 

fixed location to be node P. The left-hand side (LHS) of Equation 5, however, contains a partial 

second derivative with respect to x and, therefore, this derivative must be evaluated at a fixed 

time. The choice of this fixed time, however, is not so straightforward because over a time step 

Δt, one may evaluate the LHS at time t, or t + Δt, or at an intermediate time between t and t + Δt. 

In general, therefore, we may write Equation 5 as 
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where ψ is a weighting factor, superscript n refers to the new time t + Δt, and superscript o refers 

to the old time t. If we choose ψ = 1 then the discretisation is called implicit, if ψ= 0 then it is 

called explicit, and if 0 < ψ< 1, it is called semiimplicit or semi-explicit. Each choice has a 

bearing on economy and convenience with which a numerical solution is obtained. The choice of 

ψ is therefore made by the numerical analyst depending on the problem at hand. The main issues 

involved will become apparent following further developments. 

3.1 TSE Method 

To employ this method, Equation 5 is first written in a non-conservative form. Thus, 



   ……………  7 
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Equation 7 contains first and second derivatives of T with respect to x. To represent these 

derivatives we employ a Taylor series expansion: 

          …………………..  9 

           ………………  10 

From these two expressions, it is easy to show that 

     …………..  11 

        ……………   12 

Note that, in Equations 9 and 10, terms involving derivative orders greater than 2 are ignored. 

Therefore, Equations 11 and 12 are called second-order accurate representations of first- and 

second-order derivatives with respect to x. 

Now to evaluate the time derivative, we write, 

   ………………..    13 

or 

          ……………………….   14 



In Equation 13, derivatives of order higher than 1 are ignored; therefore, Equation 14 is only a 

first-order-accurate representation of the time derivative. Inserting Equations 11 and 12 in 

Equation 7 and Equation 14 in Equation 8 and employing Equation 6, we can show that 

 ..15 

with 
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Where ΔV = A Δx. Note that if the cell faces were midway between adjacent nodes, 2 Δx = Δxe + 

Δxw. Before leaving the discussion of the TSE method, we make the following observations: 

1. Calculation of coefficients AE and AW requires evaluation of the derivative d (kA)/d x |P. This 

derivative can be evaluated using expressions such as (11) in which T is replaced by kA. 

2. For certain variations of (kA) and choices of Δxe and Δxw, AE and/or AW can become 

negative. 

3. For certain choices of Δt, the multiplier of   
  in Equation 18 can become negative. 

4. In steady-state problems, Δt = ∞and T 
o
 has no meaning. Therefore, in such problems, ψ 

always equals 1. 

3.2 IOCV Method 

In this method, the RHS and LHS of Equation 5 are integrated over a control volume Δx and 

over a time step Δt. Thus, 

  .. 19 



Where         . It is now assumed that the integrands are constant over the time interval Δt. 

Further,     is assumed constant over the control volume and since the second-order derivative is 

evaluated at a fixed time, we may write 

   ……….. 20 

It is further assumed that T varies linearly with x between adjacent nodes. Then 

   …………………..  21 

Note that when the cell faces are midway between the nodes, these representations of the 

derivatives are second-order accurate (see Equation 11). Using Equation 21 therefore gives 

   ….  22 

Similarly, 

  ………………….  23 

Substituting Equations 22 and 23 into the integrated version of Equation 6, therefore, we can 

show that 

  … 24 

Where 

   ………….   25 
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Note that Equation 24 has the same form as Equation 15, but there are important differences: 

1. Coefficients AE and AW can never be negative since kA/Δx can only assume positive values. 

2. AE and AW are also amenable to physical interpretation; they represent conductances. 

3. Again, in steady-state problems, ψ = 1 because t =∞. In unsteady problems, for certain choices 

of Δt, however, the multiplier of   
 can still be negative. This observation is in common with the 

TSE method. 

3.3 Stability and Convergence     

Before discussing the issues of stability and convergence, we recognize that there will be one 

equation of the type (24) [or (15)] for each node P. To minimize writing, we designate each node 

by a running index i = 1, 2, 3, . . . , N, where i = 1 and i = N are boundary nodes. Thus, Equations 

24 are written as 

..28 

Where superscript n is now dropped for convenience. In these equations, APi represents 

multiplier of TP in Equation 24. It will be shown later that this equation set can be written in a 

matrix form [A][T]=[S],where [A] is the coefficient matrix and [T] and [S] are column vectors. 

This set can be solved by a variety of direct and iterative methods. The methods yield converged 

solutions only when the condition for convergence (also known as Scarborough’s criterion is 

satisfied) is satisfied. To put it simply, the criterion states that,    . 

Condition for Convergence 

 

     for all nodes,  …..  29 



  for at least one node.  ……..  30 

 

3.4 Explicit Procedure ψ = 0 

In this case, Equation 28 will read as 

  …..  31 

Equation 31 shows that the values of Ti at a new time step are now calculable explicitly in terms 

of values T
o
i−1, T

o
i , and T

o
i+1. Terms containing Ti+1 and Ti−1 do not appear on the RHS. 

Therefore, the equation is explicit and no iterations are required. This situation is also depicted in 

Figure 4. Thus, starting with known initial temperature distribution at t = 0, one can evaluate 

temperatures at each new time step. Such a solution procedure is called a marching solution 

procedure. It is very easy to devise computer code for a marching procedure. In an explicit 

procedure, the issue of convergence is irrelevant but the stability of the calculation procedure 

requires that the coefficient of T
o
i always be positive. From Equation 31 it is clear that this 

requirement is satisfied when 

 

Figure 4. Explicit procedure.  
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Note, 

This condition of positiveness is strictly meant for the case of ψ = 0. For ψ = 1, the condition is 

automatically satisfied. For 0 < ψ < 1, however, the condition again holds but can be violated 

without impairing stability of the solution procedure. 



 


